11,053 research outputs found

    The Changing Role of Non-CO2 Greenhouse Gases

    Get PDF
    During the last century, the concentrations of several greenhouse gases have increased considerably - most notably carbon dioxide, methane and nitrous oxide. In addition, new, entirely man-made gases have been put into the atmosphere that also cause the greenhouse effect; these include the chlorofluorocarbons. Calculations have shown that during the last century the non-COâ‚‚ greenhouse gases could together be almost as effective as the increase of carbon dioxide in causing global warming. These and similar gases were therefore included in the Kyoto Protocol to develop a comprehensive plan for controlling potentially unfavorable climatic change. Studies show however that the other gases, with few exceptions, are likely to play a smaller than expected role in future global warming. The most significant non-COâ‚‚ manmade greenhouse gases are methane and nitrous oxide. Methane rose from 700 ppbv some 200 years ago to about 1750 ppbv in recent times, while nitrous oxide rose from about 285 ppbv to 318 ppbv over the same time. These trends made methane the most important gas for global warming after carbon dioxide. But now, the rate of increase of methane has slowed down considerably. Budget analyses suggest that we may not see major changes of concentrations in the future comparable to the trends of the last century. Thus the role of methane in future global warming may be less than expected earlier. Nitrous oxide on the other hand, has increased slowly but steadily during recent decades. It is likely to become more important in the future compared with methane. While other greenhouse gases such as the perfluorocarbons, sulfur hexafluoride and hydrochlorofluorocarbons are included in the Kyoto Protocol, these are present in such minute concentrations that it is unlikely that they will have an important role in future global warming

    Doubled CO2 Experiments With the Global Change Research Center Two-Dimensional Statistical Dynamical Climate Model

    Get PDF
    The zonally averaged response of the Global Change Research Center two-dimensional statistical dynamical climate model (GCRC 2-D SDCM) to a doubling of atmospheric carbon dioxide (350 parts per million by volume (ppmv) to 700 ppmv) is reported. The model solves the two-dimensional primitive equations in finite difference form (mass continuity, Newton\u27s second law, and the first law of thermodynamics) for the prognostic variables: zonal mean density, zonal mean zonal velocity, zonal mean meridional velocity, and zonal mean temperature on a grid that has 18 nodes in latitude and 9 vertical nodes (plus the surface). The equation of state, p=rhoRT, and an assumed hydrostatic atmosphere, Deltap=rhogDeltaz, are used to diagnostically calculate the zonal mean pressure and vertical velocity for each grid node, and the moisture balance equation is used to estimate the precipitation rate. The model includes seasonal variations in solar intensity, including the effects of eccentricity, and has observed land and ocean fractions set for each zone. Seasonally varying values of cloud amounts, relative humidity profiles, ozone, and sea ice are all prescribed in the model. Equator to pole ocean heat transport is simulated in the model by turbulent diffusion

    Carbon monoxide in the antarctic atmosphere: Observations of decreasing concentrations

    Get PDF
    Hydroxyl radicals remove hundreds, perhaps thousands, of organic gases from the atmosphere and are often regarded as am index of the oxidizing capacity of the Earth\u27s atmosphere (Thompson 1992). In recent years, there have been growing concerns that, over the past century and now, human activities may be depleting hydroxyl concentrations by adding huge amounts of carbon monoxide and methane to the atmosphere. Reduction in the hydroxyl concentrations can then indirectly lead to more global warming, stratospheric ozone depletion, and other disturbances in atmospheric chemistry. Carbon monoxide (CO) is a key component in the determination of hydroxyl radical (OH) concentrations: increases of CO would lead to a decline of OH. Global increases of CO had been observed in the 1980s (Khalil and Rasmussen 1985, 1988, 1990), but now it appears that the atmospheric concentrations of CO are falling. Here we will report data from Antarctica that suggest recent decreases in the concentration of CO

    Low scale B-L extension of the Standard Model at the LHC

    Get PDF
    The fact that neutrinos are massive indicates that the Standard Model (SM) requires extension. We propose a low energy (<TeV) B-L extension of the SM, which is based on the gauge group SU(3)_C x SU(2)_L x U(1)_Y x U(1)_{B-L}. We show that this model provides a natural explanation for the presence of three right-handed neutrinos in addition to an extra gauge boson and a new scalar Higgs. Therefore, it can lead to very interesting phenomenological implications different from the SM results which can be tested at the LHC. Also we analyze the muon anomalous magnetic moment in this class of models. We show that one-loop with exchange Z' may give dominant new contribution ~ few x 10^{-11}.Comment: 12 page

    The Atmospheric Lifetime Experiment and the Global Atmospheric Gas Experiment (ALE/GAGE)

    Get PDF
    The ALE/GAGE project was designed to determine the global atmospheric lifetimes of the chlorofluorocarbons CCl3F and CCl2F2 (F-11 and F-12), which had been identified as the main gases that cause stratospheric ozone depletion. The experimental procedures also provided the concentrations of CH3CCl3, CCl4 and N2O. The extended role of the project was to evaluate the mass balances of these gases as well. Methylchloroform (CH3CCl3) serves as a tracer of average atmospheric OH concentrations and hence the oxidizing capacity of the atmosphere. Nitrous oxide (N2O) is a potent greenhouse gas and can also deplete the ozone layer. Measurements of these gases were taken with optimized instruments in the field at a frequency of about 1 sample/hr. Toward the end of the present project methane measurements were added to the program. The final report deals with the research of the Oregon Graduate Institute (OGI) as part of the ALE/GAGE program between 4/1/1988 and 1/31/1991. The report defines the scope of the OGI project, the approach, and the results

    Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells

    Get PDF
    In this work, the role of reduced graphene oxide (rGO) with hyperbranched surfactant and its hybridisation with multiwalled carbon nanotubes (MWCNTs) and platinum (Pt) nanoparticles (NPs) as counter electrode (CE) were investigated to determine the photovoltaic performance of dye-sensitised solar cells (DSSCs). Sodium 1,4-is(neopentyloxy)-3-(neopentyloxycarbonyl)- 1,4-dioxobutane-2-sulphonate (TC14) surfactant was utilised as dispersing and stabilising agent in electrochemical exfoliation to synthesise graphene oxide (GO) as initial solution for rGO production prior to its further hybridisation and fabrication as thin film. A chemical reduction process utilising hydrazine hydrate was conducted to produce rGO due to the low temperature process and water-based GO solution. Subsequently, hybrid solution was prepared by mixing 1 wt% MWCNTs into the produced rGO solution. TC14-rGO and TC14-rGO_MWCNTs hybrid solution were transferred into fluorine-doped tin oxide substrate to fabricate thin film by spraying deposition method. Finally, the CE films were prepared by coating with thin Pt NPs. Photoanode film was prepared by a two-step process: hydrothermal growth method to synthesise titanium dioxide nanowires (TiO2 NWs) and subsequent squeegee method to apply TiO2 NPs. According to solar simulator measurement, the highest energy conversion efficiency (η) was achieved by using CE-based TC14-rGO_MWCNTs/Pt (1.553%), with the highest short current density of 4.424 mA/cm2. The highest η was due to the high conductivity of CE hybrid film and the morphology of fabricated TiO2 NWs/TiO2 NPs. Consequently, the dye adsorption was high, and the photovoltaic performance of DSSCs was increased. This result also showed that rGO and rGO_MWCNTs hybrid can be used as considerable potential candidate materials to replace Pt gradually

    Constraining supersymmetric models from B_d - B-bar_d mixing and the B_d --> J/psi K_S asymmetry

    Full text link
    We analyze the chargino contributions to B_d - B-bar_d mixing and CP asymmetry of the B_d --> J/psi K_S decay, in the framework of the mass insertion approximation. We derive model independent bounds on the relevant mass insertions. Moreover, we study these contributions in supersymmetric models with minimal flavor violation, Hermitian flavor structure, and small CP violating phases and universal strength Yukawa couplings. We show that in supersymmetric models with large flavor mixing, the observed values of sin(2 beta) may be entirely due to the chargino-up-squark loops.Comment: 22 pages, 1 figure, minor corrections, version to appear in Phys. Rev.
    • …
    corecore